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It is shown that the bulk modulus of a polycrystalline material, composed of cubic single crys- 
tals, is the same as that of the constituent single crystal. The bulk modulus of the aggregate is 
independent of the distribution of the individual single crystals. The same results apply also to 
other polycrystalline systems, whose constituent single crystals undergo a pure uniform con- 
traction when subjected to hydrostatic pressure. 

1. I n t r o d u c t i o n  
The elastic constants of polycrystalline materials 
depend in general on the elastic constants of the con- 
stituent single crystals and the orientation distribution 
of these over a given volume. Calculation of the exact 
elastic constants of a polycrystalline aggregate is in 
most cases not ,easy, even if the distribution of the 
individual single crystals is specified precisely. For 
isotropic polycrystals it might be thought at fir'st sight 
that the elastic constants could be obtained from those 
of the individual single crystals by the method of 
simple averaging. This is, however, not so. If we 
regard the deformation of the polycrystal simply as 
the result of the deformation of the constituent single 
crystal, it would, in principle, be necessary to solve the 
equations of equilibrium for every single crystal, 
taking into account the appropriate boundary condi- 
tions at their surfaces of separation [1]. Thus, the 
relationship between the elastic properties of the 
whole polycrystal and those of its constituent single 
crystal depend on their actual form of the latter and 
the degree of correlation of their mutual orientations. 
A general relationship between the elastic constants of 
the polycrystal and the constituent single crystal of 
the same material is difficult to obtain. The prob- 
lem becomes even more complicated when we con- 
sider polycrystals with texture, i.e. with anisotropic 
properties. 

Calculations concerning the elastic constants of 
polycrystals have been based either on numerical 
simulations of the aggregate mass or have used some 
well known approximations such as those of Voigt [2] 
and Reuss [3]. These approximations in general give 
bounds for the values of the elastic constants of the 
polycrystal. Bishop and Hill [4] and Hill [5] considered 
an isotropic, statistically homogeneous polycrystal 
composed of cubic single crystals. For this case the 
upper and lower bounds for the bulk modulus of the 
polycrystal, obtained using the Voigt and Reuss 
approximations, were the same and equal to the bulk 

modulus of the cubic single crystal. While any aggre- 
gate theory should consider the conditions of both 
continuity and equilibrium, Bell [6] in his discussion of 
prediction of aggregate properties points out that the 
analysis of Bishop and Hill explicitly included only the 
continuity condition. By using a similar approach, 
Andrews [7] calculated the bulk modulus of a class of 
cubic polycrystals with texture; in this case too the 
approximations showed that the bulk modulus of the 
polycrystalline aggregate was the same as that of the 
component single crystal. This led him to speculate 
that for all polycrystals composed of cubic single crys- 
tals of the same material, the bulk modulus of the 
aggregate is the same as that of the individual single 
crystal. Lifshitz and Rozentsveig [8] have calculated 
with fair accuracy the modulii of an isotropic polycrys- 
tal when the elastic properties of the constituent single 
crystals are nearly isotropic. A first approximation to 
the elastic modulii of the polycrystal found it to be the 
same as the "isotropic" part of the single crystal 
modulus. A second approximation leads to additional 
terms which were quadratic in the "anisotropic" part 
of the modulus. However, these terms were found to 
be independent of the shape of the single crystals and 
the correlation of their orientations. More recently, 
Sowerby, Viana and Davies [9] have discussed a 
method, using a crystallite orientation distribution 
function (CODF), to correlate texture and mechanical 
properties of materials. The CODF expresses the 
probability that a crystallite has a certain orientation 
and this function can be obtained from a limited 
number of pole figure distributions. It is possible that 
such an approach can also be used to obtain the bulk 
modulus of polycrystalline materials from a knowledge 
of the single crystal's modulus. 

In this paper, a purely analytical approach has been 
used to give an exact calculation of the bulk modulus 
of polycrystals, whose constituent single crystals have 
cubic symmetry. The results also hold for some classes 
of crystals besides those of cubic symmetry. 
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2. Analysis 
We assume familiarity with basic crystal elasticity 
theory and associated tensor notation. Details in this 
latter respect can be found in Nye [10] and Landau 
and Lifshitz [1]. 

Consider a cubic single crystal subjected to a uniform 
hydrostatic pressure p. If  K is the bulk modulus of this 
crystal then 

p = - -KA (1) 

where A is the uniform dilatation or fractional change 
in volume of the single crystal. For the case of crystals 
with cubic symmetry such a relation holds because the 
linear compressibility is isotropic [10]; a sphere of a 
cubic crystal when subjected to a hydrostatic pressure 
remains a sphere. Under these conditions the stress 
(aij) and strain (eij) in the solid are 

aij = - P f i j  (2a) 

and 

e~j = 1A6ij (2b) 

where 6ii is the Kronecker delta function; 6ij = 0, for 
i =~ j, and is unity otherwise. Now, e, = A and 
therefore the fractional linear change in length, i.e. the 
strain eij, is one third of the dilatation. The stress-strain 
relationship for the cubic single crystal can be assumed 
to be 

! 

~ j  = c i jk t~  (3) 

where c~k~ is the stiffness constant tensor for the cubic 
crystal in the four suffix notation [10]. By substituting 
Equations 1 and 2 in Equation 3 and simplifying we 
obtain 

C~.kl6kl = 3K6ij (4) 

Now, the polycrystal is made up of a number of 
single crystals in various orientations and hence the 
stiffness constant tensor cim(r ) in the polycrystal is a 
function of position r, thus 

cijkz(r) = Mini(r) M,j(r)  c;,,,opMo~(r) Mpt(r ) (5) 

where C~,op is the stiffness constant tensor of the single 
crystal in its principal axis system and the Mrs(r) is a 
rotation matrix that rotates the coordinate system 
from the principal axes of the single crystal at position 
r to the global axis system of the polycrystalline 
material. Equation 5 defines the stiffness constant 
tensor of the polycrystal at position r in its global axis 
system. 

If  this polycrystal is subjected to external traction 
and is in equilibrium then the stress and strain in the 
polycrystal satisfy the equilibrium equations 

~ ~aij y=~ 0xj - 0 i = 1 ,2 ,3  (6) 

and the equation of compatibility. 
Let the polycrystalline material be subjected to 

external forces or displacements, which give rise to 
stresses and strains in the individual single crystals. 
We shall assume that the stress and strain in a single 
crystal is uniform. Then the effective stiffness constant 
tensor of the polycrystal c~jkt is defined as [10] 

C.ijkl(ekl ) = (Cijkl~kl) (7) 
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where the angular brackets denote an average of the 
respective quantities over a whole aggregate. With 
every single crystal of the polycrystalline aggregate is 
associated a rotation matrix Mr~(r). The rotation 
matrices are orthogonal and satisfy the equations, 

MikMjk = MkiMkj = 6ij (8) 

In view of the orthogonality relation Equation 8 
and the fact that C2nop satisfies Equation 4, it is easily 
verified by substitution that the tensor cijk~(r) also 
satisfies Equation 4. Now Equations 1 to 3 are satisfied 
.simultaneously if and only if Equation 4 holds under 
identical conditions. Therefore the state of stress and 
strain everywhere in the polycrystal corresponds to a 
pure hydrostatic pressure and to uniform dilatation 
respectively. Moreover, if these are assumed to be 
independent of position the corresponding stress and 
strain clearly satisfy the equilibrium and compatibility 
equations and the boundary conditions as well as 
being the same in every constituent single crystal of 
the aggregate. By the uniqueness theorems of elasticity 
the above solutions, therefore, completely represent 
the state of stress and strain everywhere in the poly- 
crystal. Substituting these values of stress and strain in 
Equation 7 gives, 

A 
?ijkt(ekt) = eijkk ~ (9) 

and (cijktek/) = (ci jk~)(A/3) = 3K6~j(A/3) = KA6ij .  
We have used the identity that cij~k = C~jkz6kl = 3K6ij 
from Equation 4. 

It remains to be shown that K is also the bulk 
modulus of the polycrystal. Since O~jk~(ek~) = (Cuktekt) 
from Equation 5, then using Equation 9 we see that 
gijk~(A/3) = KA6ij  or Cijkk = 3K6ij. This shows that 
the effective stiffness constant tensor of the polycrystal 
also satisfies Equation 4. 

From Equation 3 we obtain the following equation 
for the average stress (6ij) in the polycrystal 

#ij = (Cijklakt) = KA6ij  (10) 

However, since the state of stress everywhere in the 
polycrystal is a uniform hydrostatic pressure p, we find 
using Equation 2a in Equation 10, the following 
relationship between hydrostatic pressure and dilata- 
tion for the polycrystal 

p = - K A  

K is the same as that of the single crystal. Hence we 
have shown that the bulk modulus of the polycrystal 
and of the constituent single cubic crystal are the 
same. 

3. Remarks  
Our analysis has been carried out for the case of 
polycrystals composed of constituent cubic single 
crystals. In proceeding through the analysis it is seen 
that our derivation holds, in general, as long as 
Equation 4 holds for the individual single crystal 
system. This is certainly true for cubic single crystal 
systems but it may also be valid in crystals having 
other types of symmetries. In particular it is true 
for polycrystals composed of single crystals, whose 
response to a hydrostatic pressure is a pure contraction. 



In our derivation we have made no assumptions as 
to the nature of the distribution of the single crystals 
in the polycrystalline aggregate. Hence the results 
derived hold for any distribution of single crystals in 
the aggregate. In practical terms, this implies for 
instance that the bulk modulus of a rolled polycrystal- 
line copper sheet will be the same as that of an isotropic 
sheet of the same metal. Furthermore, that bulk 
modulus is equal to that of a single crystal of copper. 

The experimentally determined bulk modulus of 
single crystal cubic boron nitride and single crystal 
cubic diamond are 3 x t03 and 4.4 x 103Nm -2 
respectively [11]. These values are within 10% of the 
corresponding values for polycrystalline CBN and 
diamond (which are directly bonded without a binder) 
[11, 12]. Experimental values of the bulk modulus of 
some cubic metal crystals tabulated in Gilman [13] 
also show good agreement with the bulk modulus of 
the corresponding polycrystals obtained from the 
CRC handbook. A survey of the literature however 
has not yielded systematic experimental results of the 
bulk modulus of single and polycrystals. 

It may be possible to extend this analysis to other 
types of crystal systems as well as to polycrystals 
composed of more than one kind of single crystal 
material. 

4. Conclusions 
An analysis has been presented to calculate the bulk 
modulus of polycrystalline materials composed of 
cubic single crystals of a single material. The bulk 
modulus of the aggregate is shown to be independent 

of the distribution of the constituent single crystals 
and is equal to the bulk modulus of the constituent 
cubic single crystal. The same analysis also applies to 
systems possessing some symmetries of the cubic crys- 
tal, in particular those single crystals whose response 
to a hydrostatic pressure is a uniform contraction. 
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